

Aviation Weather InformationFuture Plans

NASA Aviation Safety Program

Weather Accident Prevention Project Review

Paul Stough Projects and Advanced Concepts Branch NASA Langley Research Center Hampton, VA 23681-2199 (757) 864-3860

E-mail: h.p.stough@larc.nasa.gov

Outline

Aviation Weather Information

Timeline

Needs

Plans

Technology Development

Aviation Weather Information

Weather Channel in the Cockpit

Implementation Catalyst

Develop viable 1st generation systems

Stimulate implementation

1998 2001

2005

Information; Not Data

Next generation technologies
Data fusion
Alerting and decision aiding

- Expand in situ weather measurement capability
 - -Provide soundings at other than major airports
 - –Provide data at lower altitudes
 - -Provide moisture data
- Expand use of satellite weather observations
 - Incorporate more data from current weather satellites into aviation products
 - -Provide coverage of oceans and remote areas
 - Incorporate high resolution soundings from nextgeneration satellites
 - -Improve short-term forecasts

- Combine diverse weather data sources
 - -Combine onboard and datalink sources
 - Account for variations in spatial resolution or coverage
 - Account for variations in time of observations or forecasts
 - -Relate to route of airplane
- Provide same weather sources and information for air side and ground side
 - -Foster collaboration
 - Address different platforms

- Insure that pilots can use the full capabilities of the system
 - –Make it right before it is entrenched
- Prevent workload increase
 - -Turn data into information
 - -Create decision-based products
 - Look at the system in the context of everything else in the cockpit
 - Avoid creating new types of accidents due to operational shortcomings

- Establish cross-industry standardization of use of color and symbology
 - -Not the role of an individual company
 - –Needed for disparate types of information (terrain, airspace, etc.)
- Provide FAA information for regulations and guidance materials
 - Certification issues may deter things that would be beneficial
 - -With no data, everybody's opinion is equally valid
 - -Standards should be intentional, not just reflect what was done
 - Procedures for use are needed
 - -Research identifies areas where better training is needed

- Reduce risk for providing advanced tools
 - -Go beyond readily available "easy" products
 - -Link airplane and pilot capabilities to the decision
 - Consider ATC imposed restrictions in decision support

Future Plans

Aviation Weather Information

Develop Needed Weather Products and Sensing Capabilities

- Information fusion combine data from diverse sources to synthesize information required to generate displays
- TAMDAR automated airborne weather reporting
- ASAP satellite observations and soundings to improve weather reports and forecasts

Future Plans

Aviation Weather Information

Develop Enhanced Weather Presentations and Decision Aids

- Advanced information portrayal
 - Colors and symbols
 - Route-specific
 - Vertical extent
 - Collaborative use
- Alerting and decision aiding
 - Hazardous weather thresholds
 - Reliability of information
- Use of strategic information with tactical information
- Lessons from operational experience with AWIN systems

Summary

Aviation Weather Information

Two Areas of Emphasis

- Weather Products and Sensing Capabilities
- Enhanced Weather Presentations and Decision Aids

Milestones

- 2003 Flight evaluation of AHAS with cockpit display
- 2004 Operational evaluation of TAMDAR
- 2004 Next generation presentation/aiding guidelines
- 2005 Flight demonstration of next generation technologies